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Magnetohydrodynamic gas-ionizing shock waves can be used as an example of a surface 
of discontinuity separating two perfect media of different properties [l- 51. The gasdy- 

namic equations are, in this case, used to describe the behavior of the gas on one side of 
the surface of discontent and the magnetohydrodynamic equations, to describe it on 

the other side. It has been shown that in a number of cases the boundary conditions emer- 
ging from the continuity requirements are insufficient to describe the ionizing shock 
waves. Additional boundary conditions needed follow from the requirement of the exist- 
ence of a continuous solution describing the wave structure, and their form depends on 
the ratios of the dissipative coefficients of the gas. 

Below we consider the general properties of the surfaces of discontinuity separating 

two arbitrary perfect media (including the particular case of two identical media), and 
obtain additional relations following from the condition of existence of a solution descri- 
bing the structure of such a wave. These relations depend, in general, on the dissipative 

properties within a narrow layer representing the shock wave. 

Section 1 deals with classification of the evolutionary discontinuities separating two 
different media. Section 2 contains a general discussion of the structure of such discon- 
tit&ties, together with additional boundary conditions, and the conditions of evolutiona- 
rity are also assessed. In Sect. 3 an example is given where recombination waves (across 
which the conductivity of gas varies from infinity to zero) are considered in the presence 

of a magnetic field of arbitrary orientation. 

1, Gsnerol propertie and cl.aaaiflcation of the rurfacer of dia- 
oonrfnuity, Let us suppose that the surface I = I* (1) separates two perfect media, 
i.e. media in which plane waves of small perturbations move without attenuation or 
dispersion. We shall assume that nrvariables describe the medium situated to the left 
of the discontinuity and n, variables - the medium to the right of the discontinuity and, 
that the number of small perturbations of various types moving in the left direction away 
from the discontinui~ is sr, while that moving to the right is f (numbers of ~rturbations 
arriving from the left and right direction are, respectively, nr - ar and n, - a& 

Usually a certain number of relations can be set up directly, for the perfect media, at 
the discontinuity. Relations following from the laws of conservation of mass, impulse and 
energy and the continuity relations for the tangential component of the electric field 
and normal component of the magnetic field following from the Maxwell equations. are 
examples of such relations. We shall call these relations fundamental and denote their 
number by r. 

If sl + s, + i < r, then the discontinuity is nonevolutionary [6] and the amplitudes 
of the outgoing small perturbations are overdefined. Interaction of such discontinuities 
with small perturbations lead to the appearance of perturbations of finite amplitude, and 
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the discontinuity disintegrates. Transalfvenian waves in MHD are an example of such 
discontinuities. 

If sr 4 s, +I > r,then discontinuities may exist, In this case additional r - (sr + 
-f- 5, -f f) relations a& required. These relations will ensure that the discontln~lity is 
evolutional and will make obtaining unique solutions to problems ~cor~rat~g such a 

discontinuity possible, The above number of relations can, indeed, be obtained from the 
requirement of existence of a solution representing the structure of such waves (see Sect, 

2 below). These relations will depend on the character of the dissipative processes within 
the discontinuity. The waves for which additional relations are required include the 

combustion waves in gas dynamics v] and in MHD [8-IO] as well as the ionizing waves 
(l- 51 in magnetic field. When this approach to the probiem is adopted, we see that the 
existence of a disco~tinui~ of one or the other type is intimately connected with the 
existence of solution representing the structure of the discontinuity, Existence of such 
structure will be discussed in very general terms in Sect. 2. Each particular case demands 

a more detailed investigation. Here we shall assume that the discontinuity exists and 
that the necessary additional relations have been obtained. If 21 + aa f 1 = r, then r 
fundamental relations are sufficient for a complete description of the discontinuity. 

Thus, at the evolutionary discontinuity q -+- r, + j relations should hold. These rela- 

tions will connect 3) quantities to the left of the discontinuity, “2 - to the right of the 

discontinuity and the velocity of the discontinui~ ii = dz*/dt. 

Let nr quantities to the left of the discontinuity and C , be given. If + > 81 i- 5 -L f, 

then n2 quantities to the right of the discontinuity can be determined. This will not, 
however, be unique, as it will involve an arbitrariness necessary for the wave to be evo- 

lutionary and needed for obtaining solutions to problems containing such a discontinuity, 

A unique determination of ns quantities to the right of the discontinuity is possible when 

“1 = sr + s2 + t.If however n,< sr f r, + 1, then the quantities to the right of the dis- 

continllity cannot be defined for arbitrarily elected quantities to the left of the disconti- 
nuity and of its velocity. In order to satisfy conditions at the discontinui~ it is necessary 

for the *, + i given quantities to be bound by s1 ;- sa + I - n2 relations. Similar con- 
clusions’can be drawn by assuming the quantities to the right of the discontinuity and its 

velocity to be given. 
We therefore see that the possihle types of discontinuities characterized by the rela- 

tions below, are 
1 n2 = t, + a, + i = nl 

II n,==li~It+f<nl II’ nl=3#+s2+f<rq 

Ill n* < SI -i- *I -t * = Ri III’ nj<~~+“~it==~ 

SV n, < 11 + 12 + f < nJ IV’ nJ < ‘1 + % + 1 < % 

v f , + PJ < nl 81 + $2 + i < n2 

VI ,tJ < *I + 82 -i_ i n, < fJ + I2 + i 0-f) 

Discontinuities described by II’, III’ and IV’ are not of independent types and can be 
obtained by interchanging the subscripts 1 and 2 in II, III and IV. 

For the discontinuities of the type I, II, II’, III’, IV’and V, the quantities to the left of 
the discontinuity and its vetocity, can be assigned arbitrarily. For the types III, IV and 
VI, they should be connected by .q, .+ ‘Pi + ? - n2 relations. Relations at the disconti- 
nuity yield unique values for the quantities to the right of the shock wave in case of the 
types I. II, III, III’, IV and VI, and values with the accuracy of up to ILL - (SJ + s2 + i) 

arbitrary parameters, for the types II’, IV’ and V. 



Type I discontintities correspond to the gas dynamic and MJID shock waves. and to 
detonation, while combustion process in gas dynamics and MHD corresponds to type VI. 

In the case of ionizing shock waves with the normal magnetic field component given, 
the medium before the shock wave is described by nine quantities, p, T, v, II, and II, 
and that behind the wave - by seven quantities, since E, can be expressed in terms of o 
and II. The number q + r, + i of the boundary conditions at the ionizing shock wave 
varies for rhe different types of waves f3-53. Slow supersonic ionizing wave (seven rela- 
dons) corresponds to the type IL Intermediate supersonic and slow subsonic waves 
(eight relations) correspond to the type IV. Fast supersonic and intermediate subsonic 
waves (nine relations) correspond to the type III. 

0. Stturture of the dliconttnuitfsr and rddftfoarl boundary con- 
di tionr, We shall investigate the structure of discontinuities separating different media 
and obtain the required number of the boundary conditions connecting the values of the 
quantities at z = - 00 and r = DC , ftom the conditions of existence of that structure. 
The method adopted in our study will, basically, resemble that used in [1X] for a single 
medium. 

We shall assume that each medium,separated by the surface of discontinuity s = 0, 

a = iwhen z<O, a-2 when t>U 
Here A& &i’=), ci’=) and Oi#a) are functions of +(‘) a = i .2.. Some of the uk(t) 

may coincide with certain U& [Ft. In the particular case dealing with the structure of a 
discontinuity in a single medium, all ~~~1) coincide with uk’*) and the systems given by 
(2.1) for a = I and a = 2 , become identical. 

We shall assume that the steady state solutions of (2.1) are continuous (the requirement 
that (2, I) has no characteristics stationary with respect to the discontinuity, will suffice). 
In addition, we shall. assume that all spatially periodic small perturbation waves described 
by (2.1) and propagating across a homogeneous medium background decay (we shall call 
such systems dissipative fllf ). These conditions will be fulfilled, If the matrix Dij has 
a sufficient number of elements ; thus, in the ma~e~hydrodynamic case it is sufficient 
that the heat conductivity as well as the volume and magnetic viscosity are all different 
from zero. 

Equations of a perfect medium corresponding to (2.1) govern the large scale perturba- 
tions and are obtained by equating to zero the terms in (2.1) containing the lowest order 
de&at&es cf”‘(uT”Q =so (2.2) 

&#C”) 
A+) X 

@us”’ 
1, at +BIj”‘x=o (24 

Let us consider the case when the number of independent equations given by (2.2) is 
less thau N,. In this case we can write some of u&‘~’ in terms of the remaining ones and 
insert them into (2.3). We shall assume that the perfect system obtained in this manner 
is hyperbolic, denote its order by R~ and the number of its characteristics emanating from 
the discontinuity, by e. _ 

Let us investigate the continuous solutions of (2.1) in each of the regions t < 0 and 
I > 0, satisfying some boundary conditions connecdng’ui(*) and wit*) on the plane z = 0. 
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Solutions tending to constant values of urd as t -t (-- I)” x , will represent the struc- 
ture of the discon~~~. Obviously, u;% should satisfy (2.2). Boundary conditions at 
the media interface may express the continuity or the change in some quantities, reflec- 
ting the change in the properties of the medium on the passage across the surface of the 
discontinuity. 

Number of the boundary conditions depends on the properties of (1.1) and shall be 
obtained below, Let us linearize the system (1.1) in g,‘“) and consider a solution of the 
form WP i (kr --w t). Equation (1.1) yields the following algebraic connection between 

w and k Is)’ ‘) (a , k) XL 0 (2.4) 

and from it we can obtain a set of values k, (O ). k2 (o),. . ., A.,,, (W ) (where Jf ,.denotes 

the order of the system (2. l)), for every w . From the previous assumption that spatially 

periodic small perturbations decay we can infer that when lm o > 0 , then the roots ki 
lie on the real axis of the complex plane il. . Functions ki tw ) have no poles in the upper 
semiplane OJ and are, consequently, continuous, since it is only in the neighborhood of a 

pole that real values of k corresponding to o with lm w > U can be found, Roots ki (w) 

lying in the upper semiplane of k correspond, when lm w > L, , to the waves propagating 
to the right, and the roots lying in the lower semiplane - to the waves propagating to the 
left. Thus, when imw>O ,the waves emanating from the surface of the discon~~~ 
decay with the distance ) while the waves incoming at this surface, increase with increa- 
sing I . Let us denote the number of waves emanating from the discontinuity in the left 
and right direction by 1’1 and pz and those incoming at the discontinuity - by 91 and ‘I;* 

Conditions at the boundary separating two media should define the amplitudes of the 

emanating waves and the motion of the discontinuity, therefore we require PI -t p2 + 1 
boundary conditions. This represents the condition of evolutionari~ for dissipative media. 
Analogous conclusions on the number of boundary conditions required at a stationary bound- 
ary for an arbitrary system of equations, was proved in [l2]. When both media are iden- 

tical, /‘J -{- I’? -= pJ + qJ -; p2 + 11: equations describe the conditions of continuity of 
rrj and of the first derivatives with respect to J of those u,whose second derivatives ap- 

pear in (2.1). An extra boundary condition must prescribe the position of the surface on 

which these ~nditions are given. 
in investigating the steady state solutions, due attention must be given to solutions of 

the type exy I (ks -cot) at the limit, when w + u. If w - 0 from the upper semiplane, 

then no roots k, (w) may intersect the real axis of k or tend to some firiite value different 
from zero. This follows from the assumption that all small periodic perturbations decay 
with time. Some of ki (0) will tend to zero as w --. U. Perturbations corresponding to 

these roots will, obviously, be described by the perfect system (2.2) and (2.3) _ therefore 
the number of roots tending to zero will be equal to ns. 

These of the tlo roots ~j (w) which correspond to the waves of the perfect system propa- 
gating to the right, will tend to zero as w - 0 (1~ II) > 0) from the upper semiplane of 

the complex plane k, whfle those corresponding to the waves propagating to the left, 
will tend to zero from the lower semiplane. 

Computing the number of roots remaining in the upper and lower semiplanes of the 
complex plane k when o - 0 we find that pa - sowaves decay on moving away from 

the discontinuity, nowaves are independent of I, and q. - “a -t so waves increase on 

moving away from the discontinuity. Let us denote some of the derivatives an,,, ‘@)/a= 

by w,,,‘~), m = no y 1, no _i- 2,. . . M, in such a manner, that only the first order deri- 
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vatives in I ate left in the system (2.1). Integral curves in the space V”l of varaibles 
‘OJ and ~.,(“which do not tend to infinity with 

Z some surfaces Xiai 

c -- = , tend to singular points lying 

given by Eqs.(2.2) together with the equation 10, = 0. 

Dimension of the surface Z(“) is equal to n*, and this corresponds to the fact that the 

linearized system has n,solutions independent of 11, when o = 0 . Each point of the sur- 
face X(‘) represents a singularity of system (2.1) with pa + q1 - na characteristic direc- 
tions corresponding to those values of k{(O) which are different from zero. As we said 

before, p. - sm of these characteristic directions are occupied by the integral curves 

entering the singulatity point as I -, (- I)” 00, and the remaining ones - by the integral 

curves emerging from the singularity point. 

Set of integral curves entering any of the singularity points as J -+ (- I)” s , is char- 

acterized by pa - I, + n. arbitrary constants, of which n,constants define the position 
of the singularity point on the surface Z’=) , while p, - I, constants describe the manner 

of approach of an integral curve to this singularity point. We can choose uz defining 
the state of the perfect medium in front and behind the jump, as the quantities describing 
the positions of the singularity points and denote the constants describing the manner of 

approach of the integral curve to a singularity point by C,(a’)t 0 = 1, 2, . . . p, - c,. 
Segments of the integral curves in the spaces V(l) and V’*) which enter the singularity 

points as 2 4 (- 1)” m , and satisfypr + p2 + 1 boundary conditions at the boundary 
separating two media when t = 0, represent the structure of the shock wave. In general, 
any two singularity points, one of which lies on Z”) and the other on Z(*), can be con- 
nected by a solution describing the structure of the shock wave. The coordinates uilA 

and I$; of such singularity points must however satisfy certain relations in order for 

such a solution to exist. Let us find the number of the required relations. 
Conditions at the boundary separating two media can be written as 

F, (up;, CF’) = 0 (23 

(6 = 1, 2, . . ., PI + pr + I; a = I, 2, . . ., p, - s., a = I, 2) 

which, on eliminating c,‘“) yield sl + s, + 1 equations connecting up2 and ~2 

I, ($& IQ) = 0 (r =1,2,...,r,+q+l) (2.6) 
Thus we see that the conditions of evolutionarity are fulfilled. The form of the equa- 

tions (2.6) is in general defined by the properties of the dissipative system (2.1). Never- 

theless, as we said in Sect. 1, in many cases the relations (2.6). or at least some of them, 
are known and independent of the properties of the dissipative system. 

Laws of conservation of mass, impulse and energy are examples of such relations, as 
well as the relations expressing the continuity of the tangential components of the elec- 
tric field and normal component of the magnetic field. We recall, that in Sect. 1 we have 
classified the above relations as fundamental, and the remaining relations given by (2.6) 

and depending generally on the properties of the dissipative system, as complementary. 
Elimination of the variables C, (‘)from (2.5) so as to obtain (2.6) is possible, provided 

that at least one nontrival solution of (2.5) exists and, that the determinant of at least 
one highest order minor of the matrix C = 11 M’ddCa”\l is not zero. If the first condition 
is not fulfilled, then no solution exists representing the structure of the discontinuity. 
Existence of the structure should be specially confirmed for each particular case. If the 
matrix C is degenerate, then the values of the coefficients c,“) are no longer unique, 
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and the number of equations in (2.5) will exceed ss + s, + i. This obviously corresponds 
to nonevolutionary discontinuities. Solution describing the structure of such discontinu- 
ities, if it exists, will not be unique. The degeneracy of matrix G , or for that matter any 

other degeneracy, can be considered an exception, although, if the points for which #I-!- 

+ % A- 1 is less than the number of fundamental relations are chosen as the initial and final 
singularity points, then the degeneracy of C is predetermined. Cases of nonevolutionary 
waves have been encountered in MHD. 

In some cases it may transpire that on one side of the discontinuity pr - so ==Q or that 
by (2.5) all Czl on this side are equal to zero. In this case the continuous variation of 
quantities appearing in the solution representing the structure of the discontinuity will be 
confined to one side of the interface only, while all quantities will be constant on the 

other side. When the above conditions hold on both sides of the interface, then regions 

in which all values are constant will also appear on both sides of this interface. If some 
ak(t) coincide with IQ’*) , and conditions at the interface stipulate their continuity, or the 
continuity of their derivatives, then in the latter case the perfect variables will be con- 
tinuous at the discontinuity. Such ionization and recombination surfaces parallel to the 
magnetic field, were dealt with in @I. 

It can easily be confirmed that the conclusion concerning the total number of the bound- 
ary conditions satisfied the perfect variables u;*($ and u:*& at the discontinuity, remains 
valid in the case when the shock wave structure contains a layer defined by a system of 

equations which differ from those valid for the regions situated to the left and right of 

this layer. Existence of this type of shock waves in a gas in the presence of a magnetic 

field was shown in 1133, and it was found that the conductivity of the gas was equal to 
zero in front and behind the wave, and different from zero within a certain layer con- 
tained within the structure of such a shock wave. 

We note that the structure of the discontinuities considered above was regarded as a 

steady state solution of the dissipative equations. Discontinuities however exist which do 

not possess a steady state structure, such as, e. g., the tangential velocity jump in a per- 
fect fluid, or a rotational discontinuity in h&l& Velocity of propagation of such discon- 

tinuities coincides with one of the characteristic velocities ;conclusions of this paper do 

not however apply to such discontinuities. 

8. Racomb~aation df$continuitio$ in A gr8 in the prcrrsncr of 
an arbitrarily orlsntated mrgaetle field, To illustrate our previous 
arguments, we shall consider the recombination discontinuities in a gas in the presence 

of a magnetic field. 
We shall assume that the magnetic field is arbitrarily inclined to the surface of the 

d~con~ui~. recombination waves parallel to the magnetic field were considered 
earlier in @I. 

We shall also assume that the conductivity of the gas is a function of the density and 

temperature 0 = a (p, T) and, that o > 0 in some ( p , T )-space of variables, whose bound- 

ary is given by the equation F (p, T) = 0 , and is identically zero outside this space. 

Basic boundary condition follow from the continuity of the mass flux, the impulse 
(three equations), the energy, the continuity of the tangential electric field component 

(two equations) and of the normal magnetic field component. 
When obtaining the additional boundary conditions in their relevant form, we assume 

that all dissipative coefficients are appreciably smaller than the value of the magnetic 
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viscosity. 
Equations describing the structure of the recombination waves coincide with those for 

the ionizing waves. The only difference is that in the case of recombination waves 
we must find the integral curve originating at one of the singularity points situated with- 
in the area s > 0 and terminating at one of the singularity points within the area ? = 0, 
while in the case of inonizing waves it is the other way round. Using the data of the 
singularity points and on the character of the integral curves given in [5] which deals 
with ionizing shock waves, we can easily construct solutions representing the structure 
of the recombination waves. Methods of constructing such solutions are well presented 
in Cl- 5 and 131, consequently we shall just quote the final results. 

Let us denote the normal gas velocity component in front and behind the d~c~~~~ 
by ul and us, respecdveIy ; gasdynamic velocity of sound, density and temperature behind 
the discondnuity by as, pi and Ts and the velocities of propagation of the fast Alfvenian 
and the slow perturbations in front of the discontinuity by o,, aA and a_respecdvely. 

Next we shall write the conditions governing the gas velocities ur and US for four pos- 
sible types of recombination waves together with the addidonal boundary conditions 
obtained for the case when the magnetic viscosity is much higher than that of the re- 
maining dissipative coefficients. When the relations between the dissipative coefficients 
are changed, then the additional boundary conditions may assume a different form, but 
their number will remain the same 

1. %> a+, %>@a, P(oa, Ts) =O 
2 aA < &I < e, 

(3.1) 
%<@a. F(pr, Tr)=O 

3. 
(3.2) 

*+ < a1 < a+, us > a:* F(I%, T,) = 0, 
4- a_ < u1 < “A# 

If,,= f(&*) (3.3) 
us < aa, F (pr, T,)=V, .!Ur, m Hz1 - Hz,=0 (3.1) 

Last relation of (3.3) represents the equation of the integral curves emerging, with 
increasing r , from the singularity point corresponding to the state in front of the wave. 
Form of the funcdon f can be found either by numerical integration, or by ~ns~c~g 
the sotution in form of a series. Relations (3.3) and (3.4) ar written in a coordinate sys- 
tem, in which H,, = 0. For the waves of the type given by (3.4). the inequality us < at, 

where (11 is the gasdynamic velocity of sound in front of the wave, also holds. 
If the dependence of the gas conducdvity on p and 2’ is such that the conductivity is 

different from zero in &ont of a certain gasdynamic shock wave and equal. to zero behind 
it, then additional two types of recombination waves are possible, 

5. “I > a+, u, < aa (3.5) 

There am no additional relations in this case 

6. a_ < %< OA’ uz < ot. AH, = H,, - H,, = 0, AHz = 0 (3.6) 
With waves of this type we have the inequality US> or. 
In all these waves, hydrodynamic parameters and the magnetic field undergo a change 

(with the exception of the waves described by (3.6) where the magnetic field is constant), 
In addition, we have the recombination waves in which the hydrodynamic parameters 
and the magnetic field are continuous. Their spatial position and modon are defined 
by the temperature and density fields in a continuous Row, by the relation F (p, T) = 0 
which, together with the equations AH, = V and dHz = 0 can be regarded as three addi- 
tional relations for these waves. The velocity of gas u = u1 = us in such waves, should 
sadsfy one of the following inequalities 
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JJ < a-. a<u<aA (3.7) 

where a = 01 = as denotes the hydrodynamic velocity of sound. 
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